DSL语句

DSL(Domain Specific Language),中文翻译为特定领域语言,在这里代表ES中的查询语言。

Elasticsearch的查询可以分为两大类:

  • 叶子查询(Leaf query clauses):一般是在特定的字段里查询特定值,属于简单查询,很少单独使用。
  • 复合查询(Compound query clauses):以逻辑方式组合多个叶子查询或者更改叶子查询的行为方式。

快速入门

语法结构:

GET /索引库名/_search
{
"query": {
"查询类型": {
// .. 查询条件
}
}
}
  • GET /索引库名/_search:其中的_search是固定路径,不能修改

以最简单的无条件查询为例,无条件查询的类型是:match_all,因此其查询语句如下:

GET /items/_search
{
"query": {
"match_all": {}
}
}

虽然是match_all,但是响应结果中并不会包含索引库中的所有文档,而是仅有10条。这是因为处于安全考虑,elasticsearch设置了默认的查询页数。

叶子查询

叶子查询的类型也可以做进一步细分,详情可以查看官方文档

这里列举一些常见的:

  • 全文检索查询(Full Text Queries):利用分词器对用户输入搜索条件先分词,得到词条,然后再利用倒排索引搜索词条。例如:
    • match
    • multi_match
  • 精确查询(Term-level queries):不对用户输入搜索条件分词,根据字段内容精确值匹配。但只能查找keyword、数值、日期、boolean类型的字段。例如:
    • ids
    • term
    • range
  • 地理坐标查询:用于搜索地理位置,搜索方式很多,例如:
    • geo_bounding_box:按矩形搜索
    • geo_distance:按点和半径搜索

全文检索查询

全文检索的种类也很多,详情可以参考官方文档

以全文检索中的match为例:

GET /索引库名/_search
{
"query": {
"match": {
"字段名": "搜索条件"
}
}
}

match类似的还有multi_match,区别在于可以同时对多个字段搜索,而且多个字段都要满足,语法示例:

GET /索引库名/_search
{
"query": {
"multi_match": {
"query": "搜索条件",
"fields": ["字段1", "字段2"]
}
}
}

精确查询

精确查询,英文是Term-level query,顾名思义,词条级别的查询。也就是说不会对用户输入的搜索条件再分词,而是作为一个词条,与搜索的字段内容精确值匹配。因此推荐查找keyword、数值、日期、boolean类型的字段。例如:

  • id
  • price
  • 城市
  • 地名
  • 人名

详情可以查看官方文档

term查询为例:

GET /{索引库名}/_search
{
"query": {
"term": {
"字段名": {
"value": "搜索条件"
}
}
}
}

range查询:

GET /索引库名/_search
{
"query": {
"range": {
"字段名": {
"gte": {最小值},
"lte": {最大值}
}
}
}
}

range是范围查询,对于范围筛选的关键字有:

  • gte:大于等于
  • gt:大于
  • lte:小于等于
  • lt:小于

复合查询

复合查询大致可以分为两类:

  • 第一类:基于逻辑运算组合叶子查询,实现组合条件,例如
    • bool
  • 第二类:基于某种算法修改查询时的文档相关性算分,从而改变文档排名。例如:
    • function_score
    • dis_max

其它复合查询及相关语法可以参考官方文档

bool查询

bool查询,即布尔查询。就是利用逻辑运算来组合一个或多个查询子句的组合。bool查询支持的逻辑运算有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

bool查询的语法例如:

GET /items/_search
{
"query": {
"bool": {
"must": [
{"match": {"name": "手机"}}
],
"should": [
{"term": {"brand": { "value": "vivo" }}},
{"term": {"brand": { "value": "小米" }}}
],
"filter": [
{"range": {"price": {"gte": 1000, "lte": 10000}}}
]
}
}
}

与搜索关键字无关的查询尽量采用must_not或filter逻辑运算,避免参与相关性算分。

排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。不过分词字段无法排序,能参与排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

语法说明:

GET /indexName/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"排序字段": {
"order": "排序方式asc和desc"
}
}
]
}

分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。

基础分页

elasticsearch中通过修改fromsize参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

GET /items/_search
{
"query": {
"match_all": {}
},
"from": 0, // 分页开始的位置,默认为0
"size": 10, // 每页文档数量,默认10
"sort": [
{
"price": {
"order": "desc"
}
}
]
}

深度分页

elasticsearch的数据一般会采用分片存储,也就是把一个索引中的数据分成N份,存储到不同节点上。这种存储方式比较有利于数据扩展,但给分页带来了一些麻烦。

比如一个索引库中有100000条数据,分别存储到4个分片,每个分片25000条数据。现在每页查询10条,查询第99页。那么分页查询的条件如下:

GET /items/_search
{
"from": 990, // 从第990条开始查询
"size": 10, // 每页查询10条
"sort": [
{
"price": "asc"
}
]
}

从语句来分析,要查询第990~1000名的数据。

从实现思路来分析,肯定是将所有数据排序,找出前1000名,截取其中的990~1000的部分。但问题来了,我们如何才能找到所有数据中的前1000名呢?

要知道每一片的数据都不一样,第1片上的第900-1000,在另1个节点上并不一定依然是900-1000名。所以我们只能在每一个分片上都找出排名前1000的数据,然后汇总到一起,重新排序,才能找出整个索引库中真正的前1000名,此时截取990-1000的数据即可。假如我们现在要查询的是第999页数据呢,是不是要找第9990~10000的数据,那岂不是需要把每个分片中的前10000名数据都查询出来,汇总在一起,在内存中排序?

由此可知,当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力。

因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,elasticsearch提供了两种解决方案:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存下来,基于快照做分页。官方已经不推荐使用。

详情见文档

大多数情况下,我们采用普通分页就可以了。一般我们采用限制分页深度的方式即可,无需实现深度分页。

高亮

实现高亮的思路为:

  • 用户输入搜索关键字搜索数据
  • 服务端根据搜索关键字到elasticsearch搜索,并给搜索结果中的关键字词条添加html标签
  • 前端提前给约定好的html标签添加CSS样式

elasticsearch已经提供了给搜索关键字加标签的语法。

GET /索引库名/_search
{
"query": {
"match": {
"搜索字段": "搜索关键字"
}
},
"highlight": {
"fields": {
"高亮字段名称": {
"pre_tags": "<em>",
"post_tags": "</em>"
}
}
}
}

注意

  • 搜索必须有查询条件,而且是全文检索类型的查询条件,例如match
  • 参与高亮的字段必须是text类型的字段
  • 默认情况下参与高亮的字段要与搜索字段一致,除非添加:required_field_match=false

总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • fromsize:分页条件
  • sort:排序条件
  • highlight:高亮条件

RestClient查询

查询的基本步骤如为:

1)创建request对象,这次是搜索,所以是SearchRequest

2)准备请求参数,查询DSL对应的JSON参数

3)发起请求

4)解析响应,响应结果相对复杂,需要逐层解析

快速入门

之前说过,由于Elasticsearch对外暴露的接口都是Restful风格的接口,因此JavaAPI调用就是在发送Http请求。而我们核心要做的就是利用利用Java代码组织请求参数解析响应结果

发送请求

第一步,创建SearchRequest对象,指定索引库名

第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等

  • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL

第三步,利用client.search()发送请求,得到响应

void testMatchAll() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
request.source().query(QueryBuilders.matchAllQuery());
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}

这里关键的API有两个,一个是request.source(),它构建的就是DSL中的完整JSON参数。其中包含querysortfromsizehighlight等所有功能

request_source

另一个是QueryBuilders,其中包含各种叶子查询复合查询

querybuilders

解析响应结果

在发送请求以后,得到了响应结果SearchResponse,这个类的结构与kibana中看到的响应结果JSON结构完全一致

解析SearchResponse的代码就是在解析这个JSON结果:

private void handleResponse(SearchResponse response) {
SearchHits searchHits = response.getHits();
// 1.获取总条数
long total = searchHits.getTotalHits().value;
System.out.println("共搜索到" + total + "条数据");
// 2.遍历结果数组
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
// 3.得到_source,也就是原始json文档
String source = hit.getSourceAsString();
// 4.反序列化并打印
ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
System.out.println(item);
}
}

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

因此,解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits.getTotalHits().value:获取总条数信息
    • SearchHits.getHits():获取SearchHit数组,也就是文档数组
      • SearchHit.getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

总结

文档搜索的基本步骤是:

  1. 创建SearchRequest对象
  2. 准备request.source(),也就是DSL
    1. QueryBuilders来构建查询条件
    2. 传入request.source()query()方法
  3. 发送请求,得到结果
  4. 解析结果

叶子查询

所有的查询条件都是由QueryBuilders来构建的,叶子查询也不例外

例如match查询:

@Test
void testMatch() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}

range查询:

@Test
void testRange() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
request.source().query(QueryBuilders.rangeQuery("price").gte(10000).lte(30000));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}

term查询:

@Test
void testTerm() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
request.source().query(QueryBuilders.termQuery("brand", "华为"));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}

复合查询

复合查询也是由QueryBuilders来构建,我们以bool查询为例

void testBool() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
// 2.1.准备bool查询
BoolQueryBuilder bool = QueryBuilders.boolQuery();
// 2.2.关键字搜索
bool.must(QueryBuilders.matchQuery("name", "脱脂牛奶"));
// 2.3.品牌过滤
bool.filter(QueryBuilders.termQuery("brand", "德亚"));
// 2.4.价格过滤
bool.filter(QueryBuilders.rangeQuery("price").lte(300));
request.source().query(bool);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}

排序和分页

示例:

@Test
void testPageAndSort() throws IOException {
int pageNo = 1, pageSize = 5;

// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
// 2.1.搜索条件参数
request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
// 2.2.排序参数
request.source().sort("price", SortOrder.ASC);
// 2.3.分页参数
request.source().from((pageNo - 1) * pageSize).size(pageSize);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}

高亮

  • 条件同样是在request.source()中指定,高亮条件要基于HighlightBuilder来构造
  • 高亮响应结果与搜索的文档结果不在一起,需要单独解析

示例:

@Test
void testHighlight() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
// 2.1.query条件
request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
// 2.2.高亮条件
request.source().highlighter(
SearchSourceBuilder.highlight()
.field("name")
.preTags("<em>")
.postTags("</em>")
);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}

结果解析部分,文档解析不变,主要是高亮内容需要单独解析出来:

private void handleResponse(SearchResponse response) {
SearchHits searchHits = response.getHits();
// 1.获取总条数
long total = searchHits.getTotalHits().value;
System.out.println("共搜索到" + total + "条数据");
// 2.遍历结果数组
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
// 3.得到_source,也就是原始json文档
String source = hit.getSourceAsString();
// 4.反序列化
ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
// 5.获取高亮结果
Map<String, HighlightField> hfs = hit.getHighlightFields();
if (CollUtils.isNotEmpty(hfs)) {
// 5.1.有高亮结果,获取name的高亮结果
HighlightField hf = hfs.get("name");
if (hf != null) {
// 5.2.获取第一个高亮结果片段,就是商品名称的高亮值
String hfName = hf.getFragments()[0].string();
item.setName(hfName);
}
}
System.out.println(item);
}
}
  • 3、4步:从结果中获取_sourcehit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为ItemDoc对象
  • 5步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 5.1步:从Map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 5.2步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 最后:用高亮的结果替换ItemDoc中的非高亮结果

数据聚合

聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组
    • TermAggregation:按照文档字段值分组,例如按照品牌值分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组
  • 度量(Metric)聚合:用以计算一些值
    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求maxminavgsum
  • 管道(pipeline)聚合:其它聚合的结果为基础做进一步运算

参加聚合的字段必须是keyword、日期、数值、布尔类型

DSL实现聚合

Bucket聚合

例如我们要统计所有商品中共有哪些商品分类,其实就是以分类(category)字段对数据分组。category值一样的放在同一组,属于Bucket聚合中的Term聚合。

GET /items/_search
{
"size": 0,
"aggs": {
"category_agg": {
"terms": {
"field": "category",
"size": 20
}
}
}
}

语法说明:

  • size:设置size为0,就是每页查0条,则结果中就不包含文档,只包含聚合
  • aggs:定义聚合
    • category_agg:聚合名称,自定义,不能重复
      • terms:聚合的类型,按分类聚合,所以用term
        • field:参与聚合的字段名称
        • size:希望返回的聚合结果的最大数量

带条件聚合

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

例如,我想知道价格高于3000元的手机品牌有哪些,该怎么统计呢?

我们需要从需求中分析出搜索查询的条件和聚合的目标:

  • 搜索查询条件:
    • 价格高于3000
    • 必须是手机
  • 聚合目标:统计的是品牌,肯定是对brand字段做term聚合
GET /items/_search
{
"query": {
"bool": {
"filter": [
{
"term": {
"category": "手机"
}
},
{
"range": {
"price": {
"gte": 300000
}
}
}
]
}
},
"size": 0,
"aggs": {
"brand_agg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}

Metric聚合

上节课,我们统计了价格高于3000的手机品牌,形成了一个个桶。现在我们需要对桶内的商品做运算,获取每个品牌价格的最小值、最大值、平均值。

这就要用到Metric聚合了,例如stat聚合,就可以同时获取minmaxavg等结果

GET /items/_search
{
"query": {
"bool": {
"filter": [
{
"term": {
"category": "手机"
}
},
{
"range": {
"price": {
"gte": 300000
}
}
}
]
}
},
"size": 0,
"aggs": {
"brand_agg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": {
"stats_meric": {
"stats": {
"field": "price"
}
}
}
}
}
}

可以看到我们在brand_agg聚合的内部,我们新加了一个aggs参数。这个聚合就是brand_agg的子聚合,会对brand_agg形成的每个桶中的文档分别统计。

  • stats_meric:聚合名称
    • stats:聚合类型,stats是metric聚合的一种
      • field:聚合字段,这里选择price,统计价格

由于stats是对brand_agg形成的每个品牌桶内文档分别做统计,因此每个品牌都会统计出自己的价格最小、最大、平均值。

总结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

RestClient实现聚合

在DSL中,aggs聚合条件与query条件是同一级别,都属于查询JSON参数,因此依然是利用request.source()方法来设置。

聚合条件的要利用AggregationBuilders这个工具类来构造,聚合结果与搜索文档同一级别,需要单独获取和解析。

@Test
void testAgg() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.准备请求参数
BoolQueryBuilder bool = QueryBuilders.boolQuery()
.filter(QueryBuilders.termQuery("category", "手机"))
.filter(QueryBuilders.rangeQuery("price").gte(3000));
request.source().query(bool).size(0);
// 3.聚合参数
request.source().aggregation(
AggregationBuilders.terms("brand_agg").field("brand").size(5)
);
// 4.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 5.解析聚合结果
Aggregations aggregations = response.getAggregations();
// 5.1.获取品牌聚合
Terms brandTerms = aggregations.get("brand_agg");
// 5.2.获取聚合中的桶
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
// 5.3.遍历桶内数据
for (Terms.Bucket bucket : buckets) {
// 5.4.获取桶内key
String brand = bucket.getKeyAsString();
System.out.print("brand = " + brand);
long count = bucket.getDocCount();
System.out.println("; count = " + count);
}
}